John Ehler's Sinewave Indicator Code

Home » News » John Ehler's Sinewave Indicator Code

A reader recently inquired about my use of this indicator and so below I provide my Octave C++ .oct  version that I have been using for the past few years.

DEFUN_DLD ( sinewave_indicator, args, nargout )
{
octave_value_list retval_list ;
int nargin = args.length () ;
int vec_length = args(0).length () ;

// check the input argument
if ( nargin != 1 )
   {
   error ("Invalid argument. Input is a single price vector.") ;
   return retval_list ;
   }

if ( vec_length < 50 )
   {
   error ("Invalid argument. Input is a single price vector.") ;
   return retval_list ;
   }

if ( error_state )
   {
   error ("Invalid argument. Input is a single price vector.") ;
   return retval_list ;
   }
// end of input checking

// inputs
ColumnVector price = args(0).column_vector_value () ;

// outputs
ColumnVector sinewave( vec_length ) ;
ColumnVector sinewave_lead_1( vec_length ) ;
ColumnVector smoothperiod_out( vec_length ) ;
ColumnVector dcphase_vec( vec_length ) ;
ColumnVector sumperiod( vec_length ) ;
ColumnVector sum_period( vec_length ) ;
ColumnVector deltaphase( vec_length ) ;

// Declarations for calculations of period, phase & sine wave measurements
ColumnVector smooth( vec_length ) ;
ColumnVector period( vec_length ) ;          
ColumnVector smoothperiod( vec_length ) ; 
ColumnVector detrender( vec_length ) ; 
ColumnVector Q1( vec_length ) ; 
ColumnVector I1( vec_length ) ; 
ColumnVector jI( vec_length ) ; 
ColumnVector jQ( vec_length ) ; 
ColumnVector I2( vec_length ) ;  
ColumnVector Q2( vec_length ) ;  
ColumnVector sI2( vec_length ) ; 
ColumnVector sQ2( vec_length ) ; 
ColumnVector Re( vec_length ) ;
ColumnVector Im( vec_length ) ; 
ColumnVector sRe( vec_length ) ; 
ColumnVector sIm( vec_length ) ;  
int dcperiod ; 
double realpart ;
double imagpart ;  
double dcphase ;
double sum_deltaphase ;
int count ;

// unrolled loop to fill the first 5 elements of above calculation vectors ( unrolled for speed optimisation )
sinewave(0) = 0.0 ; sinewave(1) = 0.0 ; sinewave(2) = 0.0 ; sinewave(3) = 0.0 ; sinewave(4) = 0.0 ;
sinewave_lead_1(0) = 0.0 ; sinewave_lead_1(1) = 0.0 ; sinewave_lead_1(2) = 0.0 ; sinewave_lead_1(3) = 0.0 ; sinewave_lead_1(4) = 0.0 ;
smoothperiod_out(0) = 0.0 ; smoothperiod_out(1) = 0.0 ; smoothperiod_out(2) = 0.0 ; smoothperiod_out(3) = 0.0 ; smoothperiod_out(4) = 0.0 ;
dcphase_vec(0) = 0.0 ; dcphase_vec(1) = 0.0 ; dcphase_vec(2) = 0.0 ; dcphase_vec(3) = 0.0 ; dcphase_vec(4) = 0.0 ;

smooth(0) = 0.0 ; smooth(1) = 0.0 ; smooth(2) = 0.0 ; smooth(3) = 0.0 ; smooth(4) = 0.0 ;
period(0) = 0.0 ; period(1) = 0.0 ; period(2) = 0.0 ; period(3) = 0.0 ; period(4) = 0.0 ;            
smoothperiod(0) = 0.0 ; smoothperiod(1) = 0.0 ; smoothperiod(2) = 0.0 ; smoothperiod(3) = 0.0 ; smoothperiod(4) = 0.0 ;
detrender(0) = 0.0 ; detrender(1) = 0.0 ; detrender(2) = 0.0 ; detrender(3) = 0.0 ; detrender(4) = 0.0 ; 
Q1(0) = 0.0 ; Q1(1) = 0.0 ; Q1(2) = 0.0 ; Q1(3) = 0.0 ; Q1(4) = 0.0 ;
I1(0) = 0.0 ; I1(1) = 0.0 ; I1(2) = 0.0 ; I1(3) = 0.0 ; I1(4) = 0.0 ; 
jI(0) = 0.0 ; jI(1) = 0.0 ; jI(2) = 0.0 ; jI(3) = 0.0 ; jI(4) = 0.0 ;
jQ(0) = 0.0 ; jQ(1) = 0.0 ; jQ(2) = 0.0 ; jQ(3) = 0.0 ; jQ(4) = 0.0 ;
I2(0) = 0.0 ; I2(1) = 0.0 ; I2(2) = 0.0 ; I2(3) = 0.0 ; I2(4) = 0.0 ; 
Q2(0) = 0.0 ; Q2(1) = 0.0 ; Q2(2) = 0.0 ; Q2(3) = 0.0 ; Q2(4) = 0.0 ;
sI2(0) = 0.0 ; sI2(1) = 0.0 ; sI2(2) = 0.0 ; sI2(3) = 0.0 ; sI2(4) = 0.0 ;
sQ2(0) = 0.0 ; sQ2(1) = 0.0 ; sQ2(2) = 0.0 ; sQ2(3) = 0.0 ; sQ2(4) = 0.0 ;
Re(0) = 0.0 ; Re(1) = 0.0 ; Re(2) = 0.0 ; Re(3) = 0.0 ; Re(4) = 0.0 ;
Im(0) = 0.0 ; Im(1) = 0.0 ; Im(2) = 0.0 ; Im(3) = 0.0 ; Im(4) = 0.0 ;
sRe(0) = 0.0 ; sRe(1) = 0.0 ; sRe(2) = 0.0 ; sRe(3) = 0.0 ; sRe(4) = 0.0 ;
sIm(0) = 0.0 ; sIm(1) = 0.0 ; sIm(2) = 0.0 ; sIm(3) = 0.0 ; sIm(4) = 0.0 ;
            
 for ( octave_idx_type ii (5) ; ii < vec_length ; ii++ ) // Start the main loop
     {
       
     // smooth the price for hilbert calculations
     smooth(ii) = (4.0 * price(ii) + 3.0 * price(ii-1) + 2.0 * price(ii-2) + price(ii-3) ) / 10.0 ; 
     
     // Detrend the input
     detrender(ii) = (0.0962 * smooth(ii) + 0.5769 * smooth(ii-2) - 0.5769 * smooth(ii-4) - 0.0962 * smooth(ii-6)) * (0.075 * period(ii-1) + 0.54) ;

     // Compute  InPhase and Quadrature components 
     Q1(ii) = (0.0962 * detrender(ii) + 0.5769 * detrender(ii-2) - 0.5769 * detrender(ii-4) - 0.0962 * detrender(ii-6)) * (0.075 * period(ii-1) + 0.54) ;
     I1(ii) = detrender(ii-3) ;

     // Advance the phase of  I1 and Q1 by 90 degrees
     jI(ii) = (0.0962 * I1(ii) + 0.5769 * I1(ii-2) - 0.5769 * I1(ii-4) - 0.0962 * I1(ii-6)) * (0.075 * period(ii-1) + 0.54) ;
     jQ(ii) = (0.0962 * Q1(ii) + 0.5769 * Q1(ii-2) - 0.5769 * Q1(ii-4) - 0.0962 * Q1(ii-6)) * (0.075 * period(ii-1) + 0.54) ;

     // Phasor addition for 3 bar averaging
     I2(ii) = I1(ii) - jQ(ii) ;
     Q2(ii) = Q1(ii) + jI(ii) ;

     // Smooth the  I and Q components before applying the discriminator
     sI2(ii) = 0.2 * I2(ii) + 0.8 * sI2(ii-1) ;
     sQ2(ii) = 0.2 * Q2(ii) + 0.8 * sQ2(ii-1) ;

     // Homodyne Discriminator
     Re(ii) = sI2(ii) * sI2(ii-1) + sQ2(ii) * sQ2(ii-1) ;
     Im(ii) = sI2(ii) * sQ2(ii-1) - sQ2(ii) * sI2(ii-1) ;
     sRe(ii) = 0.2 * Re(ii) + 0.8 * sRe(ii-1) ;
     sIm(ii) = 0.2 * Im(ii) + 0.8 * sIm(ii-1) ; 

       if ( (sIm(ii) > 0.0 || sIm(ii) < 0.0) && (sRe(ii) > 0.0 || sRe(ii) < 0.0) )
       { 
       period(ii) = 360.0 / ( ((atan(sIm(ii) / sRe(ii))) * 180.0) / PI ) ;
       }
       else
       {
       period(ii) = period(ii-1) ;
       }

       if ( period(ii) > 1.5 * period(ii-1) )
       {
       period(ii) = 1.5 * period(ii-1) ;
       }

       if ( period(ii) < 0.67 * period(ii-1) )
       {
       period(ii) = 0.67 * period(ii-1) ;
       }

       if ( period(ii) < 6.0 )
       {
       period(ii) = 6.0 ;
       }

       if ( period(ii) > 50.0 )
       {
       period(ii) = 50.0 ;
       }
 
     period(ii) = 0.2 * period(ii) + 0.8 * period(ii-1) ;
     smoothperiod(ii) = 0.33 * period(ii) + 0.67 * smoothperiod(ii-1) ;

     // Compute Dominant Cycle
     dcperiod = int ( smoothperiod(ii) + 0.5 ) ;
     realpart = 0.0 ;
     imagpart = 0.0 ;
     dcphase = 0.0 ;

      for ( octave_idx_type jj (0) ; jj <= ( dcperiod - 1 ) ; jj++ )
          {
          realpart += sin( PI/180.0 * 360.0 * jj / dcperiod ) * ( smooth(ii-jj) ) ;
          imagpart += cos( PI/180.0 * 360.0 * jj / dcperiod ) * ( smooth(ii-jj) ) ;
          }

      if ( fabs( imagpart ) > 0.0 )
         {
         dcphase = atan( realpart / imagpart ) * 180.0 / PI ;
         }
      else if ( fabs( imagpart ) < 0.001 )
              {
              if ( realpart < 0.0 )
                 {
                 dcphase -= 90.0 ;
                 }
              else if ( realpart > 0.0 )
                      {
                      dcphase += 90.0 ;
                      }
              }
         dcphase += 90.0 ;

      // Compensate for one bar lag of the 4 bar weighted moving average
      dcphase += 360.0 / smoothperiod(ii) ;

      if ( imagpart < 0.0 )
         dcphase += 180.0 ;

      if ( dcphase > 315.0 )
         dcphase -= 360.0 ;
     
     // phase output 
     dcphase_vec(ii) = dcphase ;
     
     //Now compute a differential phase, resolve phase wraparound, and limit delta phase errors
     deltaphase(ii) = dcphase_vec(ii) - dcphase_vec(ii-1) ;
     
     if ( dcphase_vec(ii-1) > 270.0 && dcphase_vec(ii) < 90.0 )
        {
 deltaphase(ii) = 360.0 - dcphase_vec(ii-1) + dcphase_vec(ii) ;
 }
 
     if ( deltaphase(ii) < 1.0 )
        { 
 deltaphase(ii) = 1.0 ;
 }
 
     if ( deltaphase(ii) > 60.0 )
        {
 deltaphase(ii) = 60.0 ;
 }

     // Sum Deltaphases to reach 360 degrees. The sum is the instantaneous period.
     sum_period(ii) = 0.0 ;
     sum_deltaphase = 0.0 ;
     count = 0 ;
     
     while ( sum_deltaphase < 360.0 ) 
           {
           sum_deltaphase += deltaphase(ii-count) ;
           count ++ ;
    sum_period(ii) = count ;
           } 

      // Resolve Instantaneous Period errors and smooth
      if ( sum_period(ii) == 0.0 )
         {
  sum_period(ii) = sum_period(ii-1) ;
  }
  
      sumperiod(ii) = 0.25 * sum_period(ii) + 0.75 * sum_period(ii-1) ;

     // sinewave output
     sinewave(ii) = sin( dcphase * PI / 180.0 ) ;
     
     // one bar leading function
     sinewave_lead_1(ii) = sin( ( dcphase + 360.0 / smoothperiod(ii) ) * PI / 180.0 ) ;
     
     // period output
     smoothperiod_out(ii) = floor ( smoothperiod(ii) + 0.5 ) ;
        
     } // end of main ii loop
      
 retval_list(3) = dcphase_vec ;
 retval_list(2) = smoothperiod_out ;
 retval_list(1) = sinewave_lead_1 ;                                                                  
 retval_list(0) = sinewave ;

return retval_list ; 
                                                                       
} // end of function

This is a straightforward conversion of the code available from here. A nice intro to how it can be used is here and Ehler's own website can be found here

Leave a Reply

Your email address will not be published. Required fields are marked *

New Providers
Binolla

The Broker
More then 2 million businesses
See Top 10 Broker

gamehag

Online game
More then 2 million businesses
See Top 10 Free Online Games

New Games
Lies of P

$59.99 Standard Edition
28% Save Discounts
See Top 10 Provider Games

COCOON

$24.99 Standard Edition
28% Save Discounts
See Top 10 Provider Games

New Offers
Commission up to $1850 for active user of affiliate program By Exness

Top Points © Copyright 2023 | By Topoin.com Media LLC.
Topoin.info is a site for reviewing the best and most trusted products, bonus, offers, business service providers and companies of all time.

Discover more from Topoin

Subscribe now to keep reading and get access to the full archive.

Continue reading